Yogi的數理教室

《AP Calculus》A plane flies horizontally at an altitude....Find the rate of the plan travels at some time

《AP Calculus》A plane flies horizontally at an altitude....Find the rate of the plan travels at some time

Question:
A plane flies horizontally at an altitude of 5 km and passes directly over a tracking telescope on the ground. When the angle of elevation is π/3, this angle is decreasing at a rate of π/6 rad/min. How fast is the plane traveling at that time?
詳細介紹

Question:

A plane flies horizontally at an altitude of 5 km and passes directly over a tracking telescope on the ground. When the angle of elevation is π/3, this angle is decreasing at a rate of π/6 rad/min. How fast is the plane traveling at that time?

Solutions:

這是典型的 Related rate problem,答題方式很簡單,基本上有一套SOP

  1. 首先先把題目的資訊整理清楚,畫出圖形來標記

  2. 列出相關的算式,比如面積、體積、長度等

  3. 把算式對時間作微分(Differentiate the equation on both side, usually by t)

  4. 帶入已知的資訊就可以得到答案

我們來看看這題怎麼做,首先把資訊整理好,並且畫出圖形,我們有

A typical related rate question. Ap Calculus AB BC

題目告訴我們 an altitude of 5 km,意思是 $$h=5$$,我們假設水平移動的距離為y,this angle is decreasing at a rate of $$\frac{\mathrm\pi}6$$ rad/min,這句話又告訴我們

$$\frac{d\theta}{dt}=-\frac{\mathrm\pi}6(rad/min)$$ 因為是decreasing所以要記得負號

首先先從圖形上的關係得到

$$\frac y5=cot\theta$$

把算式對時間作微分得到

$$\begin{array}{l}\frac{dy}{dt}=5\left(-csc^2\theta\right)\times\frac{d\theta}{dt}\\\\\end{array}$$

$$\frac{dy}{dt}=5\left(-csc^2\frac{\mathrm\pi}3\right)\left(-\frac{\mathrm\pi}6\right)=\frac59\mathrm\pi$$

所以我們就得到飛機在這個角度時的速度是 $${{\frac{dy}{dt}}=}{\frac{5\mathrm\pi}9}$$