Question:
A plane flies horizontally at an altitude of 5 km and passes directly over a tracking telescope on the ground. When the angle of elevation is π/3, this angle is decreasing at a rate of π/6 rad/min. How fast is the plane traveling at that time?
Solutions:
這是典型的 Related rate problem,答題方式很簡單,基本上有一套SOP
-
首先先把題目的資訊整理清楚,畫出圖形來標記
-
列出相關的算式,比如面積、體積、長度等
-
把算式對時間作微分(Differentiate the equation on both side, usually by t)
-
帶入已知的資訊就可以得到答案
我們來看看這題怎麼做,首先把資訊整理好,並且畫出圖形,我們有
題目告訴我們 an altitude of 5 km,意思是 $$h=5$$,我們假設水平移動的距離為y,this angle is decreasing at a rate of $$\frac{\mathrm\pi}6$$ rad/min,這句話又告訴我們
$$\frac{d\theta}{dt}=-\frac{\mathrm\pi}6(rad/min)$$ 因為是decreasing所以要記得負號
首先先從圖形上的關係得到
$$\frac y5=cot\theta$$
把算式對時間作微分得到
$$\begin{array}{l}\frac{dy}{dt}=5\left(-csc^2\theta\right)\times\frac{d\theta}{dt}\\\\\end{array}$$
$$\frac{dy}{dt}=5\left(-csc^2\frac{\mathrm\pi}3\right)\left(-\frac{\mathrm\pi}6\right)=\frac59\mathrm\pi$$
所以我們就得到飛機在這個角度時的速度是 $${{\frac{dy}{dt}}=}{\frac{5\mathrm\pi}9}$$